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Meta-Designing Quantum Experiments with 

Language Models 

Sören Arlt 

Max Planck Institute for the Science of Light 

 

 
Artificial Intelligence (AI) can solve complex scientific problems beyond human capabilities, 

but the resulting solutions offer little insight into the underlying physical principles. One 

prominent example is quantum physics, where computers can discover experiments for the 

generation of specific quantum states, but it is unclear how finding general design concepts can 

be automated. In this work we address this challenge by training a transformer-based language 

model to create human-readable Python code, which solves an entire class of problems in a 

single pass. This strategy, which we call meta-design, enables scientists to gain a deeper 

understanding and extrapolate to larger experiments without additional optimization.



 
 
  
 

                                                               

Simulations of Malicious Cross-talk for Side-channel 

Exploitation in Parallel Quantum Computing 

Brennan Bell 

Know-Center GmbH 

 

 
Cross-talk is the phenomenon by which qubit operations cause changes in behaviour to one 

another during a circuit execution. These changes can occur during qubit initialization, gate 

operations, and measurement readouts, but our focus lies on gate-oriented cross-talk operations 

which can modeled by the Kraus operators. In this talk, we will discuss a series of experiments 

using offline Qiskit simulators, concentrating on both hand-crafted and device-profiled noise 

models. We investigate how parallel execution on a single device by two parties can lead to 

information leakage via cross-talk, and aim to use this as a starting point for a discussion 

regarding instigation (malicious) and mitigation strategies.



 
 
  
 

                                                               
 

Ignorance, Thermodynamics, and Learning 

Andrew Briggs 

University of Oxford 

 

 
In a conventional deep neural network for AI, the values of the weights are scarcely more 

knowable than the position and momentum of every molecule in a container of gas. For 

Avogadro scale systems, ignorance of individual particles is complete and statistical 

knowledge determines the physical observables and efficiencies of machines. In sufficiently 

small systems it may be possible to know the position and momentum of every relevant 

particle. In mesoscopic systems fluctuations become significant. Szilard engines can be built, 

Landauer erasure can be measured, and the thermodynamic cost of a clock can be 

determined. Probability remains subjective. 

 

This prompts the question how thermodynamics and statistical mechanics can elucidate 

processes in AI. For example, in a nanoscale learning machine, such as might be constructed 

from one or a few qubits, it may be possible to know the parameters of individual activation 

switches and hence study their thermodynamic behaviour. It then becomes possible to apply 

fluctuation theorems, and hence elucidate the entropic cost of the learning process. This 

applies to both classical and quantum learning machines, and may provide new insights into 

the way how the ‘knowledge’ embodied in the weights of a network is ‘learned’ and how the 

size of a system may affect how different levels of subjective ignorance can still generate 

reliable outputs. 



 
 
  
 

                                                               
 

 

 

Efficient Online Quantum Circuit Learning with No 

Upfront Training  

Piotr Czarnik 

Jagiellonian University 

 

 

We propose a surrogate-based method for optimizing parameterized quantum circuits which is 

designed to operate with few calls to a quantum computer. We employ a computationally 

inexpensive classical surrogate to approximate the cost function of a variational quantum 

algorithm. An initial surrogate is fit to data obtained by sparse sampling of the true cost function 

using noisy quantum computers. The surrogate is iteratively refined by querying the true cost 

at the surrogate optima, then using radial basis function interpolation with existing and new true 

cost data. The use of radial basis function interpolation enables surrogate construction without 

hyperparameters to pre-train. Additionally, using the surrogate as an acquisition function 

focuses hardware queries in the vicinity of the true optima. For 16-qubit random 3-regular Max-

Cut problems solved using the QAOA ansatz, we find that our method outperforms the prior 

state of the art. Furthermore, we demonstrate successful optimization of QAOA circuits for 

127-qubit random Ising models on an IBM quantum processor using measurement counts of 

the order of $10^4-10^5$. The strong empirical performance of this approach is an important 

step towards the large-scale practical application of variational quantum algorithms and a clear 

demonstration of the effectiveness of classical-surrogate-based learning approaches. 



 
 
  

                                                               
 

 

 Quantum memory advantages for stochastic 

simulation 

Thomas Elliott 

University of Manchester 

 

 

Simulating quantum dynamics on a classical computer bears a resource cost that grows 

exponentially with the size of the system, and even the simplest of quantum systems often 

exhibit seemingly complex behaviors. This apparent problem can be recast as a positive - 

complex classical systems can be simulated efficiently on simple quantum computers. In this 

talk I will discuss the application of quantum technologies to the modelling of stochastic 

processes, for which quantum simulators can operate with lower memory cost than any classical 

alternative, in both lossless and lossy compression settings. Particularly, I will highlight 

examples of quantitative scaling divergences in modelling highly non-Markovian processes, 

wherein the provably-memory-minimal classical simulator must store diverging amounts of 

information with increasing precision, while arbitrary precision can be achieved with a finite-

sized quantum simulator. I will also discuss recent works on the experimental implementation 

of such quantum memory advantages, and the extension to modelling adaptive agents. 



 
 
  

                                                               
 

 

 

Gradient-descent methods for fast quantum state 

tomography 

Anton Frisk Kockum 

Chalmers University of Technology 

 

 

The ability to quickly and accurately characterise quantum states and dynamics is crucial for 

the development of quantum technologies. However, the problem of learning a general quantum 

state or process has exponential complexity in the size of the quantum system. In my talk last 

year, I presented results on applying generative adversarial neural networks to quantum state 

tomography [1,2,3], and on constrained gradient-descent optimization for quantum process 

tomography [4,5]. While both approaches were successful, outperforming standard methods in 

terms of both the amount of time and data needed, the question was raised whether constrained 

gradient-descent optimization could be applied to quantum state tomography and do even better 

than the machine-learning algorithm there. In this talk, I answer that question in the affirmative. 

I will present recent results [6] showing how gradient descent can be applied to quantum state 

tomography using several parameterisations that ensure the estimated state is a physically valid 

density matrix. I will show that these parameterisations enable control of the rank of the ansatz, 

and that these algorithms effectively handle noisy and incomplete data sets, yielding 

significantly higher reconstruction fidelity than state-of-the-art methods that we benchmark 

against. 

 

[1] S. Ahmed et al., Phys. Rev. Lett. 127, 140502 (2021) 

[2] S. Ahmed et al., Phys. Rev. Res. 3, 033278 (2021) 

[3] https://github.com/quantshah/qst-cgan 

[4] S. Ahmed et al., Phys. Rev. Lett. 130, 150402 (2023) 

[5] https://github.com/quantshah/gd-qpt 

[6] A. Gaikwad et al., in preparation (2025) 

 

 



 
 
  

                                                               
 

 

 

Neural matching decoder  

Mats Granath 

University of Gothenburg 

 

 
We present a hybrid decoder for matchable quantum error correcting codes based on minimum 

weight perfect matching on a graph with machine learning generated edge weights.  With large-

scale experiments on quantum error correcting codes, such as the surface code, the availability 

of experimental data motivates the use of data-driven approaches to decoding. The approach 

combines an efficient and accurate graph algorithm-based decoder with an experimentally 

informed machine learning-based graph generation algorithm. The hybrid decoder is an 

alternative to standard approaches that involve separately deducing good edge weights by 

analysing the correlations between measured syndrome detectors, effectively combining this 

analysis with the decoding into a single algorithm. We benchmark the decoder against 

matching, belief-propagation augmented matching, and a pure machine learning-based decoder 

using simulated data.   

  



 
 
  

                                                               
 

 

 

Learning the scaling of multipartite entanglement 

quantification 

Miroslav Jezek 

Palacky University Olomouc 

 

 
Entanglement is a fundamental resource for quantum technologies. Yet, the measurement cost 

of quantifying multipartite entanglement in large systems remains poorly understood. We 

explore the expressive power of deep neural networks to estimate the number of measurements 

required for entanglement quantification. Specifically, we use local single-copy measurements 

as inputs to a deep learning model trained to predict a target entanglement characteristic. For a 

fixed acceptable error in entanglement estimation, we identify the corresponding model and 

infer the minimal number of measurements required. By repeating this process for systems with 

an increasing number of particles (qubits), we aim to determine the scaling behavior of the 

measurement cost. Additionally, we discuss the potential for direct photonic entanglement 

quantification using random optical networks. 



 

                                                               
 

 

Do We Really Need Symmetry Functions to 

Understand Phase Transitions in Classical Systems? 
Carina Kamer 

TU Wien 

Phase transitions in classical systems—such as the crystallization of a supercooled liquid—are 

inherently complex as they rely on the collective rearrangement from one phase into another. Although 

the full information of a system of N particles is, in principle, contained in a 6N-dimensional phase 

space of positions and momenta, reasoning in this high-dimensional space remains inaccessible due to 

our limited spatial imagination. As a result, statistical mechanics has long relied on phenomenological 

theories and dimensionality reduction via collective variables to make sense of phase transition 

dynamics. 

One such approach is classical nucleation theory (CNT), which tracks crystallization by monitoring the 

growth of the largest crystalline cluster. This method depends critically on symmetry functions that 

detect local crystallinity, allowing for the identification of solid-like particles. While CNT performs 

reasonably well for simple model systems such as Lennard-Jones fluids, it completely fails to capture 

the full complexity of phase transitions in more realistic or biologically relevant systems, such as water 

or biominerals. But even for the simple Lennard-Jones system, open questions, such as the existence of 

a multi-step nucleation remain [1]. 

With the rise of machine learning, new opportunities have emerged to revisit these high-dimensional 

spaces. In particular, autoencoders—neural networks that learn compressed latent representations of 

input data—offer a new route to uncover structure in configuration space without pre-imposing physical 

assumptions. So far, however, autoencoder-based studies of crystallization still rely on symmetry 

functions, justified by the idea that phase transitions are ultimately about the emergence of crystalline 

symmetry rather than individual particle positions [2]. 

In this work, we challenge this assumption by exploring whether latent representations of particle 

trajectories during crystallization retain meaningful structure without any symmetry-based input. Can 

autoencoders uncover phase transition signatures directly from raw configurations, or is the signal lost 

in noise? This study addresses this long-standing question in computational physics and may offer new 

insights into how much of our current understanding depends on physically motivated but potentially 

limiting prior assumptions. 

[1] Analyzing multistep homogeneous nucleation in vapor-to-solid transitions using molecular 

dynamics simulations, K.K. Tanaka, J. Diemand, H. Tanaka, R. Angelil, Phys. Rev. E 96, 

022804 (2017) 

[2] Autonomously revealing hidden local structures in supercooled liquid, E. Boattini, S. Marjin-

Aguilar, S. Mitra, G. Foffi, F. Smallenburg and L. Filion, Nature Communications, volume 11, 

Article number: 5479 (2020) 

 

  



 

                                                               
 

Cross-Platform Autonomous Control of Minimal 

Kitaev Chains with Neural Networks 

Rouven Koch 

TU Delft / QuTech 

 

 
A one-dimensional Kitaev model implemented in a quantum dot system coupled to 

superconductors can support Majorana zero modes at the ends of the chain. Recent experiments 

[1] have shown that even a two-dot system can host “Poor Man’s Majorana” modes in a specific 

regime of the Hamiltonian, known as the sweet spot [2]. In this regime, the strengths of elastic 

co-tunneling (ECT) and crossed Andreev reflection (CAR) are equal, which is crucial for the 

appearance of Poor Man’s Majoranas. Previous studies have demonstrated that a generative 

machine learning model can predict the underlying Hamiltonian parameters based on 

experimental data [3]. In this work, we introduce an automated tuning algorithm that leverages 

a convolutional neural network to infer the Hamiltonian state, allowing the quantum dot system 

to reach the sweet spot regime autonomously [4]. By combining theoretical insights, machine 

learning, and experimental techniques, we lay the groundwork for efficient, automated tuning 

of longer Kitaev chains, with promising applications in quantum information and computing. 

 

[1] Tom Dvir, et al. "Realization of a minimal Kitaev chain in coupled quantum dots." Nature 

614.7948 (2023): 445-450. 

[2] Martin Leijnse, and Karsten Flensberg. "Parity qubits and poor man's Majorana bound 

states in double quantum dots." Physical Review B 86.13 (2012): 134528. 

[3] Rouven Koch, David van Driel, Alberto Bordin, Jose L. Lado, and Eliska Greplova. 

“Adversarial Hamiltonian learning of quantum dots in a minimal Kitaev chain.” Phys. Rev. 

Applied 20, 044081 (2023). 

[4] David van Driel, et al. "Cross-Platform Autonomous Control of Minimal Kitaev Chains." 

arXiv preprint arXiv:2405.04596 (2024).



 

                                                               
 

 

Distributed quantum dynamics on near-term 

quantum processors  

Maciej Koch-Janusz 

Haiqu, Inc. / University of Zurich 

 

 
TBA.



 

                                                               
 

 

TBA  

Roman Krems 

University of British Columbia 

 

 
TBA. 

  



 

                                                               
 

A relativistic variational quantum circuit 

Marius Krumm 

University of Innsbruck 

 

 
The field of relativistic quantum information seeks to understand the quantum information 

properties of relativistic quantum systems. A popular approach for this purpose is the Unruh-

DeWitt model for qubits interacting with quantum fields on curved spacetime. In my talk, I will 

present a relativistic variational quantum circuit (VQC) in which the interaction between qubits 

is mediated by the relativistic quantum field. An important consequence is that the tunable time 

evolution of the qubits depends on spacetime properties and quantum field propagators. 

Therefore, our VQC presents first steps in a quantum machine learning approach that seeks to 

extract quantum properties of spacetime and fields when no hand-crafted protocol is available. 

Our approach works in a regime in which the time evolution of the qubits is unitary and the 

quantum field does not act as a decohering environment, which we believe to be interesting in 

its own right.



 

                                                               
 

 

Efficient quantum-enhanced classical simulation for 

patches of quantum landscapes 

Sacha Lerch 

EPFL 

Understanding the capabilities of classical simulation methods is key to identifying where 

quantum computers are advantageous. Not only does this ensure that quantum computers are 

used only where necessary, but also one can potentially identify subroutines that can be 

offloaded onto a classical device. In this work, we show that it is always possible to generate a 

classical surrogate of a sub-region (dubbed a “patch”) of an expectation landscape produced by 

a parameterized quantum circuit. That is, we provide a quantum-enhanced classical algorithm 

which, after simple measurements on a quantum device, allows one to classically simulate 

approximate expectation values of a subregion of a landscape. We provide time and sample 

complexity guarantees for a range of families of circuits of interest, and further numerically 

demonstrate our simulation algorithms on an exactly verifiable simulation of a Hamiltonian 

variational ansatz and long-time dynamics simulation on a 127-qubit heavy-hex topology.



 

                                                               
 

 

Hamiltonian learning quantum magnets with non-

local impurity tomography 

Greta Lupi 

EPFL 

Impurities in quantum materials have provided successful strategies for learning properties of 

complex states, ranging from unconventional superconductors to topological insulators. In 

quantum magnetism, inferring the Hamiltonian of an engineered system becomes a challenging 

open problem in the presence of complex interactions. Here we show how a supervised 

machine-learning technique can be used to infer Hamiltonian parameters from atomically 

engineered quantum magnets by inferring fluctuations of the ground states due to the presence 

of impurities. We demonstrate our methodology both with a fermionic model with spin-orbit 

coupling, as well as with many-body spin models  with long-range exchange and anisotropic 

exchange interactions. We show that our approach enables performing Hamiltonian extraction 

in the presence of significant noise, providing a strategy to perform Hamiltonian learning with 

experimental observables in atomic-scale quantum magnets. Our results establish a strategy to 

perform Hamiltonian learning by exploiting the impact of impurities in complex quantum 

many-body states.



 

                                                               
 

 

Discussion session: Large-language models – what 

could they be good for in science? 

Florian Marquardt 

Max Planck Institute for the Science of Light 

 

 
I will try to guide a discussion/brainstorming session on the topic of LLMs for science. 



 

 

 

 

Out of the loop: Eliminating parameter optimisation 

in quantum-classical heuristics 

Wolfgang Mauerer 

Technical University of Applied Science Regensburg 

 

Many heuristic quantum algorithms employ a quantum-classical iterative structure that 

intersperses the evaluation of quantum circuits with classical parameter optimisation phases. 

Unfortunately, these classical procedures are often known to be NP-complete, which 

somewhat counters the hope for finding quantum improvements to problems in this (and 

related) complexity classes. 

 

Still, advantage over classical approaches is suspected for certain scenarios, but nature and 

origin of its computational power are not yet satisfactorily understood. We discuss how a mix 

of computer science and physics can help to better understand the actual computation in 

hybrid heuristics, and how the need to compute classical parameters in each iteration can be 

avoided by pre-determining a "good" set of parameters for a range of problem instances 

upfront. 

 



 

                                                               
 

 

TBA 

Alexey Melnikov 

Terra Quantum 

 

 

TBA.



 

                                                               
 

 

 

 

Quantum Reservoir Computing based on 

memristors 

Daniel Montesinos Capacete 

Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) 

 

 
We study a photonic reservoir computing framework inspired by the photonic quantum 

memristor design by Michele Spagnolo et al.  (2022). Our design significantly enhances 

memory retention and non-linear dynamic capabilities by integrating an additional optical mode 

and using dual-rail encoding to feed back previous outputs into the system. Furthermore, 

starting with single memristors, we scale the framework via spatial multiplexing, employing 

random masks and diverse dynamic functions for each unit. This architecture notably improves 

short-term memory, enabling higher accuracy in complex nonlinear tasks such as autonomous 

forecasting of the Lorenz system and MNIST classification, showcasing its potential in 

quantum reservoir computing.



 

                                                               
 

 

Representation learning reaches the lab: let 

machines act! 

Gorka Muñoz-Gil 

Innsbruck University 

 

Scientific discovery is often linked to the extraction of a few key parameters that efficiently and 

accurately represent a physical process. Among the myriad machine learning approaches 

available, variational autoencoders have perhaps captured the most attention. These methods 

generally assume the existence of a proper dataset from which to extract relevant parameters. 

However, scientific discovery can occur even earlier: during the data collection phase in the 

laboratory! In this contribution, I will demonstrate how allowing a machine to interact freely 

with an experimental setup—through predefined actions, such as activating a magnetic field, 

measuring certain observables of a quantum state or even introducing a mutant in a cell—can 

enhance the extraction of relevant parameters. Moreover, this approach can also help us 

elucidate the relationships between these actions and the experiment’s degrees of freedom. 

 

 

 

 

 

  



 

                                                               
 

 

 

Exploring topological protection in finite systems 

with interpretable machine learning 

Dmytro Oriekhov 

QuTech, TU Delft 

 

 
A number of recent experiments with engineered quantum devices, for instance quantum dots 

and superconducting circuits, demonstrated a possibility to make one-dimensional topological 

insulators, like the SSH model. At the same time, the size of systems that has been demonstrated 

so far is limited due to engineering challenges connected to their experimental realization. That 

poses a question whether it is possible to obtain topological protection in these finite-size 

systems. In this contribution, I explain two new approaches to studying topology in real-space, 

finite size, disordered systems: (1) Detailed analysis of the finite size effect breaking topological 

protection due to the cross-talk between edge states. Leveraging this understanding, we deploy 

bulk conductivity as a candidate for experimental measurement that helps evaluate the 

remaining topological projection and analyze its behavior in the presence of disorder. In (2) we 

present a hybrid combination of neural and tensor networks that accurately represent the 

topology of the system and thus, is not susceptible to common misclassifications that result 

from noise or disorder. Combining approaches (1) and (2) creates a new framework for 

characterization of the contemporary and near-term finite-size topological experiments. 

  



 

                                                               
 

Guided-SPSA: Simultaneous Perturbation 

Stochastic Approximation assisted by the Parameter 

Shift Rule 

Maniraman Periyasamy 

Frauhofer-IIS / OTH Regensburg 

 

The computational complexity, in terms of the number of circuit evaluations required for 

gradient estimation by the parameter-shift rule, scales linearly with the number of parameters 

in VQCs. On the other hand, techniques that approximate the gradients of the VQCs, such as 

the simultaneous perturbation stochastic approximation (SPSA), do not scale with the number 

of parameters but struggle with instability and often attain suboptimal solutions. In this talk, we 

introduce a gradient estimation approach called Guided-SPSA, which meaningfully combines 

the parameter-shift rule and SPSA-based gradient approximation. The Guided-SPSA results in 

a 15% to 25% reduction in the number of circuit evaluations required during training for a 

similar or better optimality of the solution found compared to the parameter-shift rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                               
 

Guarantees and limitations for warm starts and 

iterative methods in variational quantum computing 

Ricard Puig 

EPFL 

 

 
Barren plateaus are fundamentally a statement about quantum loss landscapes on average but 

there can exist patches of barren plateau landscapes with substantial gradients. This has 

motivated the study of warm starts whereby the algorithm is cleverly initialized closer to a 

minimum. Numerical studies indicate that these methods may be promising. In parallel, 

analytic studies have proven that small angle initializations, whereby the parameterized 

quantum circuit is initialized in a small region typically around identity or a Clifford, can 

exhibit non-exponentially vanishing gradients. However, a good solution may be far from this 

region and thus these methods can (in full generality) only work on a vanishing fraction of 

problem instances. In this joint submission we present general analysis of warm starts for 

physically-motivated ansatze and iterative training strategies.  Our work thus suggests that 

while there are hopes to be able to warm-start variational quantum algorithms, any 

initialization strategy that cannot get increasingly close to the region of attraction with 

increasing problem size is likely to prove challenging to train.  

 

https://arxiv.org/abs/2502.07889 

 

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.6.010317

https://arxiv.org/abs/2502.07889
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.6.010317


 

                                                               
 

Neural networks leverage nominally quantum and 

post-quantum representations 

Paul Riechers 

Simplex; Beyond Institute for Theoretical Science 

 

 
We show that deep neural networks, like transformers and RNNs, pretrained as usual on next-

token prediction, intrinsically discover and represent beliefs over ‘quantum’ and ‘post-

quantum’ low-dimensional models of classical stochastic processes. We anticipate and find 

specific architecture-independent geometric relationships among activations induced by 

different inputs. The geometric structure corresponds to the correlational structure of whatever 

stochastic process generates the data. The points in this geometry correspond to history-induced 

probability densities over all possible futures.  

  



 

                                                               
 

Neural Quantum States as Dynamical Mean Field 

Theory Solvers 

Jonas Rigo 

Forschungszentrum Jülich 

 
Neural Quantum Sates (NQS) constitute a variational wave function ansatz, that can provably 

efficiently represent even highly entangled quantum many-body states. Beyond their 

representative power, NQS inherit the speed of modern neural networks (NN) and equally profit 

from the enormous development that NNs have recently received. In this work we show that 

NQS can efficiently find the ground state of quantum impurity models with large baths, 

allowing us to compute high quality real-frequency, zero-temperature Green's functions by 

means of a Krylov-like method. We demonstrate the capability of this approach and its potential 

as dynamical mean-field theory (DMFT) solver at the example of the Bethe lattice and other 

benchmarks. 

 

 



 

                                                               
 

 Improving Quantum Machine Learning via Heat-

Bath Algorithmic Cooling 

Nayeli Azucena Rodriguez Briones 

TU Wien Atominstitut 

 

 

In this talk, I will present a novel approach rooted in quantum thermodynamics to improve 

sampling efficiency in quantum machine learning (QML). The key idea is to conceptualize 

quantum supervised learning as a thermodynamic cooling process. Based on this perspective, 

we introduce a quantum refrigerator protocol that enhances sample efficiency during both 

training and prediction, without relying on Grover iterations or quantum phase estimation. 

Inspired by heat-bath algorithmic cooling protocols, our method leverages alternating entropy 

compression and thermalization steps to reduce qubit entropy, thereby increasing polarization 

towards the dominant bias. This technique minimizes the computational overhead associated 

with estimating classification scores and gradients, making it a practical and efficient solution 

for QML algorithms on noisy intermediate-scale quantum (NISQ) devices.  

 

Reference: NA Rodríguez-Briones, DK Park. arXiv preprint arXiv:2501.02687



 

                                                               
 

 

TBA 

Asel Sagingalieva 

Terra Quantum 

 

 

TBA.



 

                                                               
 

Application of ML to Many-Body quantum 

experiments; An experimental view 

Jörg Schmiedmayer 

TU Wien Atominstitut  

 

 
In my talk I will give an overview how we as an experimental group use machine learning to 

control, read and analyse our many body quantum experiments. 

Regarding experimental control we applied Physics-Inspired Learning Algorithms to optimize 

Optical Potentials and potential corrections for ultra cold quantum gases and quantum fields 

[1].  Tis gave us a speedup of nearly a factor 10 in adapting and verifying the light-fields so that 

the atoms see the desired potential landscape. 

Regarding readout and measurement, we employed neural networks to significantly improve 

our methods to estimate the temperature of our quantum degenerate atomic ensembles [2].  The 

neural networks were able to estimate the temperature of the quantum degenerate atomic 

ensemble from the fluctuations, i.e. the matter wave spackle pattern, from much fewer 

experiments. 

Finally, I will discuss how to extract transport properties in quantum gases. In order to obtain 

both the atomic and energy currents from the sparsely measured atomic density, we employ a 

Physics Informed Neural Network (PINN) [3]. By ensuring consistency with the conservation 

laws, an enhanced fidelity of the reconstructed currents compared to methods based on finite 

difference can be achieved. 

Work performed in collaboration with the groups of A. Kugi and A. Deutschman (TU-Wien) 

and T. Calarco (Jülich). Supported by the DFG-FWF SFB ISOQUANT, and the ERC-AdG 

Emergence in Quantum Physcs (EmQ) 

[1] Optimizing optical potentials with physics-inspired learning algorithms 

M. Calzavara, et al.   Phys. Rev. Applied 19, 044090 (2023)  arXiv:2210.07776 

[2] Thermometry of one-dimensional Bose gases with neural networks  

F. Møller, et al. Phys. Rev. A 104, 043305 (2021),    arXiv:2105.03127  

[3] Characterising transport in a quantum gas by measuring Drude weights 

P. Schüttelkopf, et al.       arXiv:2406.17569 

 



 

                                                               
 

 

Quantum resources of quantum and classical 

variational methods 

Thomas Spriggs 

TU Delft 

 

 
Variational techniques have long been at the heart of atomic, solid-state, and many-body 

physics. They have recently extended to quantum and classical machine learning, providing a 

basis for representing quantum states via neural networks. These methods generally aim to 

minimize the energy of a given ansätz, though open questions remain about the expressivity of 

quantum and classical variational ansätze. The connection between variational techniques and 

quantum computing, through variational quantum algorithms, offers opportunities to explore 

the quantum complexity of classical methods. We demonstrate how the concept of non-

stabilizerness, or magic, can create a bridge between quantum information and variational 

techniques and we show that energy accuracy is a necessary but not always sufficient condition 

for accuracy in non-stabilizerness. Through systematic benchmarking of neural network 

quantum states, matrix product states, and variational quantum methods, we show that while 

classical techniques are more accurate in non-stabilizerness, not accounting for the symmetries 

of the system can have a severe impact on this accuracy. Our findings form a basis for a 

universal expressivity characterization of both quantum and classical variational methods. 

 

  



 

                                                               
 

 
 

Of Molecules and Stars: Device-agnostic Approach 

to Super-Resolution Imaging 

Dominik Vašinka 

Palacký University Olomouc 

 

 
Measurement correlations in quantum systems can exhibit non-local behavior, a fundamental 

aspect of quantum mechanics with applications such as device-independent quantum 

information processing. However, it is in general not known which states are local and which 

ones are not. In particular, it remains an outstanding challenge to explicitly construct local 

hidden-variable (LHV) models for arbitrary multipartite entangled states. To address this, we 

use gradient-descent algorithms from machine learning to find LHV models which reproduce 

the statistics of arbitrary measurements for quantum many-body states. In contrast to previous 

approaches, our method employs a general ansatz, enabling it to discover LHV models for all 

local states. Therefore, it for example provides actual estimates for the critical noise levels at 

which two-qubit Werner states and three-qubit GHZ and W states become local. Furthermore, 

we find evidence suggesting that two-spin subsystems in the ground states of translationally 

invariant Hamiltonians are genuinely local, while bigger subsystems are in general not. Our 

method now offers a quantitative tool for determining the regimes of non-locality in any given 

physical context, such as non-equilibrium, decoherence or disorder.



 

                                                               
 

 

Discovering Local Hidden-Variable Models for 

Arbitrary Multipartite Entangled States and 

Arbitrary Measurements 

Nick von Selzam 

Max Planck Institute for the Science of Light 

 

 
Measurement correlations in quantum systems can exhibit non-local behavior, a fundamental 

aspect of quantum mechanics with applications such as device-independent quantum 

information processing. However, it is in general not known which states are local and which 

ones are not. In particular, it remains an outstanding challenge to explicitly construct local 

hidden-variable (LHV) models for arbitrary multipartite entangled states. To address this, we 

use gradient-descent algorithms from machine learning to find LHV models which reproduce 

the statistics of arbitrary measurements for quantum many-body states. In contrast to previous 

approaches, our method employs a general ansatz, enabling it to discover LHV models for all 

local states. Therefore, it for example provides actual estimates for the critical noise levels at 

which two-qubit Werner states and three-qubit GHZ and W states become local. Furthermore, 

we find evidence suggesting that two-spin subsystems in the ground states of translationally 

invariant Hamiltonians are genuinely local, while bigger subsystems are in general not. Our 

method now offers a quantitative tool for determining the regimes of non-locality in any given 

physical context, such as non-equilibrium, decoherence or disorder.



 

                                                               
 

Problem-informed Graphical Quantum Generative 

Learning 

Zoltan Zimboras 

Wigner Research Centre for Physics, Hungary 

 

 
Leveraging the intrinsic probabilistic nature of quantum systems, generative quantum machine 

learning (QML) offers the potential to outperform classical learning models. Current generative 

QML algorithms mostly rely on general-purpose models that, while being very expressive, face 

several training challenges. A potential way to address these setbacks involves constructing 

problem-informed models capable of more efficient training on structured problems. In 

particular, probabilistic graphical models provide a flexible framework for representing 

structure in generative learning problems and can thus be exploited to incorporate inductive 

bias in QML algorithms. In this work, we propose a problem-informed quantum circuit Born 

machine Ansatz for learning the joint probability distribution of random variables, with 

independence relations efficiently represented by a Markov network (MN). We further 

demonstrate the applicability of the MN framework in constructing generative learning 

benchmarks and compare our model's performance to previous designs, showing it outperforms 

problem-agnostic circuits. Based on a preliminary analysis of trainability, we narrow down the 

class of MNs to those exhibiting favorable trainability properties. Finally, we discuss the 

potential of our model to offer quantum advantage in the context of generative learning.
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Classically, Metropolis-like algorithms such as MCMC are central to sampling tasks in learning 

and beyond. A recent line of work has introduced analogous quantum algorithms, but their 

associated mixing time is poorly understood. We provide sufficient conditions for the slow 

mixing of these quantum algorithms, allowing us to show (1) classical Hamiltonians that are 

hard for classical MCMC remain hard for these quantum algorithms, and (2) hardness of 

sampling from Gibbs states of non-commuting Hamiltonians, such as the 2D antiferromagnetic 

transverse field Ising model.
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In this work, we explore entanglement dynamics in gamified Clifford circuits by employing a 

reinforcement learning (RL) agent competing against a random agent. The RL agent 

strategically places gates to reduce entanglement, while the random agent increases it. This 

competitive setup induces an entanglement transition, whose characteristics depend on the 

amount of information available to the RL agent. By systematically varying the system size, 

the relative frequency of moves executed by the two agents, and the information provided to 

the RL agent, we investigate their effects on the entanglement transition. Our results reveal new 

insights into the interplay between entanglement control and information constraints, offering 

a deeper understanding of the mechanisms driving quantum circuit dynamics.



 

                                                               
 

 

 

 

 

Dynamically disentangled state-action 

representation learning  
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To understand the behavior of a physical system or phenomenon, we often seek a minimal 

abstract representation that accurately describes it. Such representations generally focus on the 

most critical features or underlying factors of variation that are sufficient for their description 

while discarding redundant details. 

  

In disentangled representation learning, models are designed to identify and separate these 

underlying factors hidden within the observed data. When the data originate from a physical 

system, the hidden factors typically correspond to the system’s degrees of freedom (e.g., the 

mass or charge of an object). Recently, the ability of Variational Autoencoders (VAEs) to learn 

such representations has rendered them particularly appealing for practical applications. 

 

In order to achieve a minimal yet informative representation of a physical system, scientific 

experiments consist of actions or observations, such as measuring observables on a quantum 

system or activating a magnetic field that captures the system’s true characteristics. In this work, 

we introduce a variant of the VAE that extracts the relevant parameters by incorporating both 

the resultant observed data and the associated actions performed on the system. By design, this 

model architecture elucidates the relationship between these actions and the corresponding 

degrees of freedom, thereby enhancing the model’s overall explainability for general-purpose 

tasks.

 


